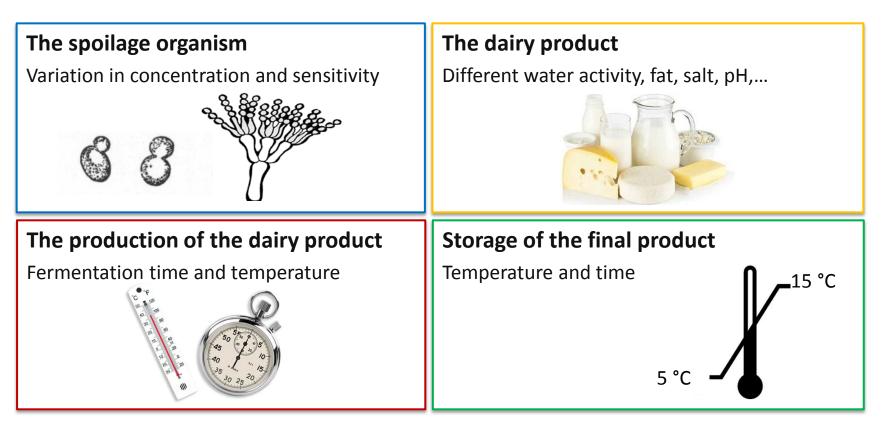
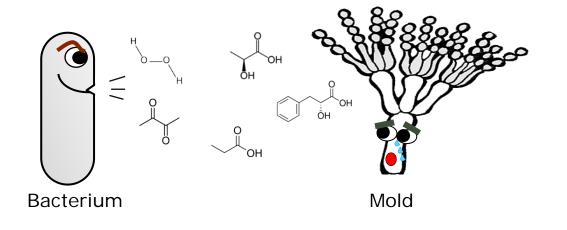
Mejeriforskningens Dag


Stina Dissing Aunsbjerg Nielsen, PhD 02-03-2017, Billund

How do bioprotective cultures work

- Factors influencing inhibitory activity


What is the mode of action of bioprotective cultures?

ed Competition for nutrients and space Cell interaction Cell communication

> Production of organic acid Lactic acid, acetic acid, propionic acid,...

Production of other inhibitory compounds Proteinaceous compounds, H₂O₂, diacetyl, fatty acids, phenyllactic acid,...

- Fungistatic \rightarrow growth of the microorganism is inhibited/delayed
- The exact mode of action is not known
- Minimal Inhibitory Concentration (MIC) is often higher than produced concentration by bacteria (synergistic effects?)

Scientific literature about bioprotective cultures

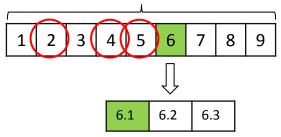
Identification of new bioprotective bacteria

- Sources: Sourdough, beer, milk, cheese,...
- Bioprotective microorganisms identified
 - o Lactobacillus sp. (many)
 - Lactococcus lactis
 - Pediococcus sp.
 - Propionibacterium sp.
 - o ...
- Active against
 - Spoilage microorganisms: yeast, molds, bacteria
 - o Pathogens

Methods to study bacterial-fungal interactions

- Proteomics: Protein expression in the fungi
- Transcriptomics: Fungal gene expression
- Microscopy: Morphological changes

Identification of inhibitory compounds


- Difficult due to the complex food matrixes
- Low concentrations of produced compounds

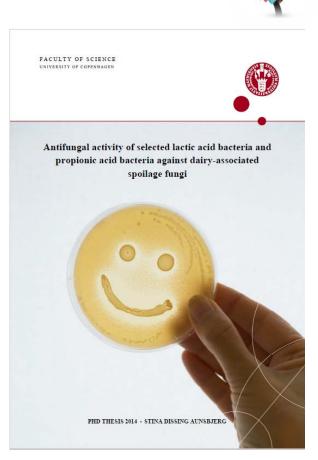
Identifying inhibitory compounds

- Method: Bioassay-guided fractionation

- Commonly applied strategy
 - Bioassay-guidet fractionation: Targeting the inhibitory fraction
 - Suitable for single or few active compounds
 - Not suitable for combination of compounds

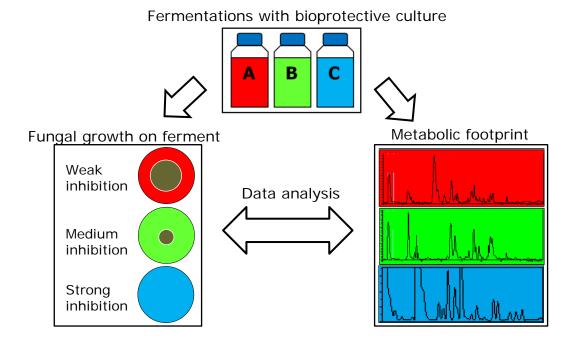
Fractions of bacterial ferment

- = Fractions show no inhibitory activity
- = Combined effect: inhibitory

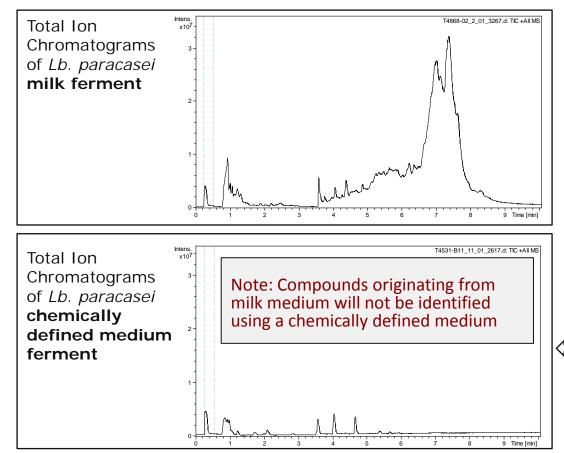

Results from my PhD project

Objectives

Investigation and characterization of the inhibitory compounds produced by *Lactobacillus paracasei* strains in yoghurt

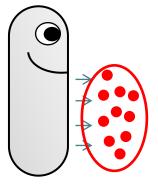

Strategy

- Use of metabolic footprinting as an alternative to bioassay guided fractionation
- A collaboration between University of Copenhagen and DuPont


Identifying inhibitory compounds

- Method: Metabolic footprinting
- Identification of the produced compounds (inhibitory and non-inhibitory)
- Correlating inhibitory activity with produced compounds by multivariate data analysis

Identification of inhibitory compounds



					Concentration (g L ⁻¹)
Components	LAB	PAB	Mold	Yeast	CDIM
Glucose	x		x	x	10
K ₂ HPO ₄	x	x	x		3
KH₂PO₄	x	x	x	x	3
MgSO4×7H2O	x	x	x	x	0.5
MnSO ₄ ×H ₂ O	x	x	x	x	0.1
CoCl ₂ ×6 H ₂ O		x			0.001
(NH4)2SO4			x	x	10
CaCl ₂ ×2H ₂ O			x	x	0.1
ZnSO ₄ ×7H ₂ O			x	x	0.01
H ₃ BO ₃				x	0.001
NH4NO3		x	x		1.6
KCI			x		0.5
CuSO ₄ ×5H ₂ O			x	x	0.001
FeSO ₄ ×7H ₂ O	x	x	x	x	0.02
Adenosine	~	x	~	~	0.1335
Na lactate		x			16
Adenine	x	~			0.025
DL-alanine	x	x			0.025
L-arginine ^a	x	x			0.1
L-asparagine ^a	x	x			0.1
L-asparagine L-aspartic acid	x	x			0.1
L-cysteine ^b	x	x			
L-cysteme L-slutamic acid					0.1
Glutamic acid	x x	x			
Glycine	x	x			0.1
L-histidine HCl					0.1
	x	x			0.1
L-isoleucine	x	x			0.1
L-leucine	x	x			0.1
L-lysine	x	x			0.1
L-methionine HCl	x	x			0.1
L-phenylalanine	х	x			0.1
L-proline	x	x			0.1
L-serine	x	x			0.1
L-threonine	x	x			0.1
L-tryptophane	x	x			0.1
L-tyrosine*	x	x			0.1
L-valine	x	x			0.1
Thiamine hydrochloride	х	x	x	х	0.001
Riboflavin	x			х	0.001
Nicotinic acid	x	x		x	0.01
Calcium pantothenate	x	x		x	0.001
Pyridoxal HCl	x	x		x	0.002
Biotin	x	x	x	x	0.0001
Folic acid	x				0.0002
Cvanocobalamin	x		х	x	0.0001

Metabolic footprinting - identification of inhibitory compounds

Procedure

- o Fermentation with bioprotective bacteria in chemically defined medium
- o Centrifugation of ferment to remove bacteria
- o Identification of produced compounds using different chemical methods

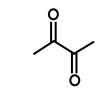
Reference

No bacteria

Ferment Not centrifuged (+bacteria)

Ferment Centrifuged (no bacteria)

Why is antifungal activity lost in cell-free ferments? - Influence of volatiles


Ferment or reference plate

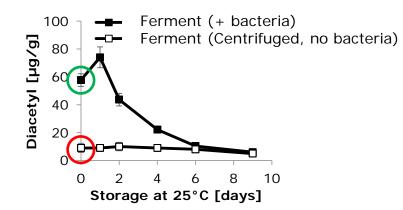
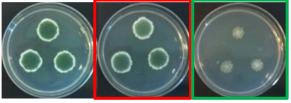
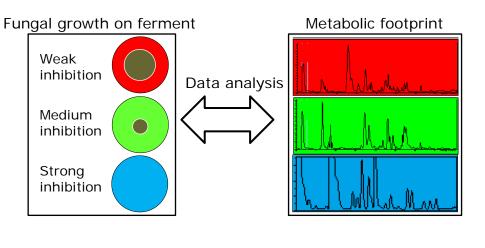


Plate with spotted mold

Exposed to headspace of: Reference plate plate with ferment


The main volatile produced: Diacetyl


Chemically defined medium ± diacetyl (no bacteria)

 $0\ \mu\text{g/mL} \qquad 10\ \mu\text{g/mL} \qquad 60\ \mu\text{g}\ /\text{mL}$

Metabolic footprinting

- Lactobacillus paracasei strains with varying inhibitory activity

All 2-hydroxy acids were antifungal but with much higher concentration needed for inhibition than the levels produced \rightarrow Complex mechanism (synergistic effects?)

Six 2-hydroxy acids were identified: 3 new and 3 previously reported in literature: 2-hvdroxv-4-ÓН (methylthio)butanoic acid p-hydroxyphenyl-3-lactic acid 2-hvdroxv-3-3-phenyllactic acid methylbutanoic acid 2-hydroxy-4-methylpentanoic acid Indole-3-lactic acid

Continued research needed within bioprotective cultures

Finding new application areas for bioprotective cultures

- Screening for new bioprotective strains
- Find solutions for product types where bioprotection is not used today

Understanding the mode of action in the real food matrix

- Identification of produced inhibitory compounds
- Optimization of methods for identification of inhibitory compounds
- The mode of action of isolated compounds
- The role of bacterial-fungal interactions
- The role of competition for nutrients and space

Interaction with starter culture

Influence of fermentation temperature on activity

Why is research relevant for the dairy industry?

- Access to the latest research results
- Development of new competences
- Use of innovative new methods
- Dedicated students

- Knowledge about inhibitory mode of action of bioprotective cultures will allow
 - o Screening for new strains
 - o Entering into new application areas