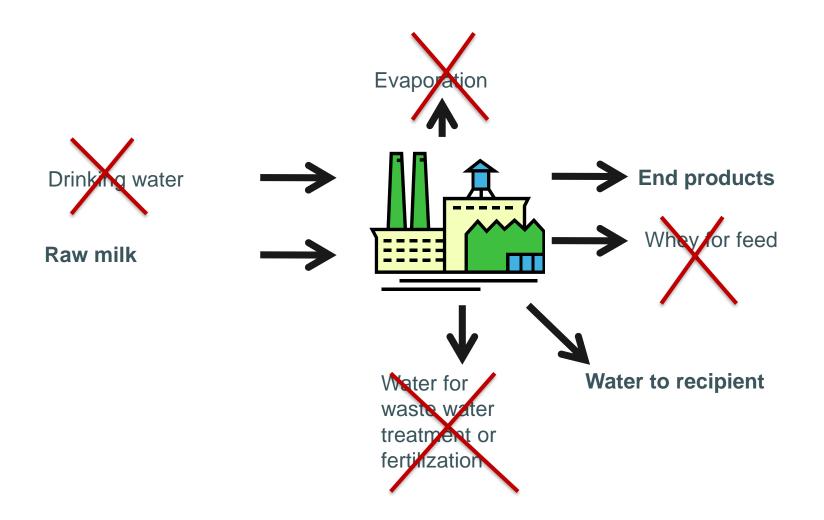
Improving water efficiency

A new sector guide on water reuse in dairy processing

More for less - The efficient dairy MejeriTeknisk Selskab December 6, 2018

Claus Heggum chg@lf.dk


Fate of water

- Milk water potentially available ~ external water needed
- Main uses:
 - CIP and manual cleaning: 33-60%
 - Operation: 14-30%
 - Utility water: 9-29%
 - Seal water: 6-15%

Output of water	Thise	Sædager	Them
Fresh products	25%		
Cheese	1/2%	9%	2%
Evaporation	4%	4%	2%
Whey	3%	37%	55%
Waste water	66%	49%	49%
Other	2%	1%	1%

VISION: ZERO-WATER- DAIRY PROCESSING

DRIVERS OF WATER REUSE

- Reduced costs of external water supply
- Reduced costs of waste water
- Reduced transport costs
- Sustainability image

(70% of drinking water is used in food production)

CHALLENGES

- Legal issues & requirements
- Burden of evidence on safety & suitability

LEGAL ISSUES

- Reference to potable/ drinking
 water in food laws
- Definitions of water do not cover milk water
- Milk water & organic foods
- Milk water & animal byproducts (ABP)

NEW INITIATIVES IN REGULATORY REFERENCES

EU:

EP proposal to amend of the COM proposal for a revised EU Drinking Water Directive:

"Drinking water requirements does not apply...... where a food business can demonstrate to the satisfaction of the competent national authorities that the quality of the water it uses does not affect the hygiene of the products or substances resulting from its activities and that such products or substances comply with Regulation (EC) No 852/2004"

Global:

Revision of the Codex General Principles for Food Hygiene: The FBO shall have an adequate supply of water-fit-for-purpose w

The FBO shall have an adequate supply of **water-fit-for-purpose** with appropriately maintained facilities for storage, distribution and temperature control, should be available.

APPROACH TO WATERS IN DAIRY PLANTS

Milk water is a milk product (i.e. a food)

- → Drinking water requirements not applicable
- \rightarrow Can be reused/recicled and/or be purified again
- \rightarrow No separate piping and storage equipment

Drinking water is water

- → Once used and suitable for reuse it becomes "potable water"
- → Can be recycled or reclaimed again if relevant DW criteria are maintained
- \rightarrow Separate piping and storage equipment

REDUCING THE BURDEN OF EVIDENCE

3 research and development 3 research and development

- Private-public partnership
- Multidisciplinary collaboration between industry (dairy, equipment), universities and competent authorities.
- Partly publicly financed

Dairy Sector Guide: Code of Best Practices on (re)claiming and re(use) of waters in dairy processing

LESSONS LEARNED SO FAR?

- 30-50 % of the water consumption is dedicated to cleaning.
- > 85-90% of the milk is water
- > 93-95% of whey is water
- > The potential to save water is great:
 - Control of use ~15% savings (average) of the water consumption

Important

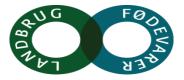
 \Rightarrow source of

water

- Claiming of milk water: up to ~60% savings
- > Optimizing reclaiming of milk water: ??
- > The recovery processes (RO) deliver safe water (short term use)
- > Additional RO (=ROP) deliver safe water for longer term use
- > The shelf life of milk water can be extended by heating & UV

The Dairy Sector Guide

- General principles
- Legal obligations
- Description of recommended technologies
- 12 scenarios for direct implementation with
 - Relevant PRPs
 - Hazard analysis
 - Validation approach
 - Hazard Control Plans
 - Verification plans
- Submission to Competent Authorities early 2019
- Implementation by end of 2019


BRANCHEKODE

FOR MEJERIVIRKSOMHEDER

KAPITEL 8: INDVINDING OG (GEN)ANVENDELSE AF VAND M.M.

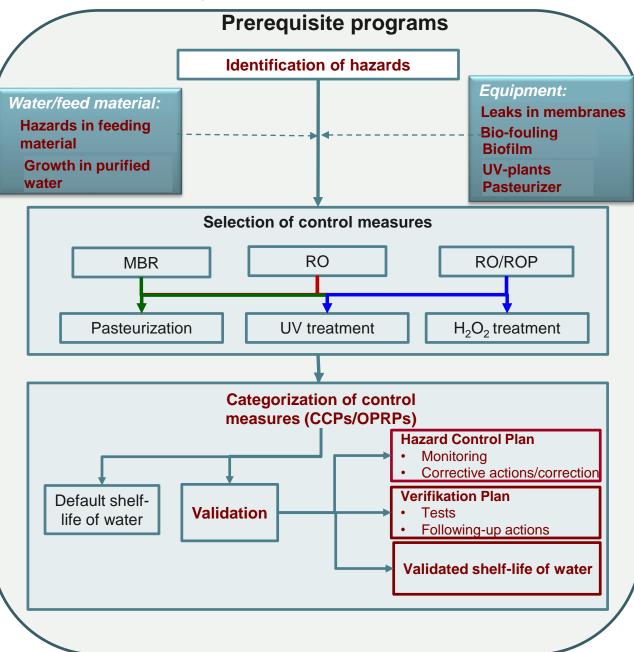
Indhold:

8.1 INDLEDNING	3
8.2 TERMER	4
8.3 LOVGIVNINGSMÆSSIGE RAMMER 8.3.1 Drikkevandslovgivning 8.3.2 Hygiejneforordningen 8.3.3 Regleme for animalske biprodukter 8.3.4 Regleme for økologi 8.3.5 Egenkontrol på mejerivirksomheder	
8.4 KILDER TIL VAND I MEJERIVIRKSOMHEDER 8.4.1 Kilder til mælkevand	
8.5 METODER TIL (GEN)INDVINDING AF (MÆLKE)VAND 8.5.1 Omvendt osmose (RO) 8.5.2 Omvendt osmose kombineret med polering (ROP) 8.5.3 MBR-teknologi (Membran bioreaktor teknologi) 8.5.4 Kondensering [planlagt udvidelse].	
8.6 VANDKLASSER I ET MEJERI 8.6.1 Klasse 1: Drikkevand 8.6.2 Klasse 2: Vand af drikkevandskvalitet 8.6.3 Klasse 3: Vand af ROP-kvalitet 8.6.4 Klasse 4: Vand af ROP-kvalitet 8.6.5 Klasse 5: Teknisk vand 8.6.6 Blanding af vandklasser	22 22 26
8.7 BAKTERICIDE BEHANDLINGER 8.7.1 UV-behandling 8.7.2 Pasteurisering 8.7.3 Brintoveriltebehandling (Alventer mere information)	
8.8 BASISPROGRAMMER. 8.8.1 Grundplan, indretning og konstruktion 8.8.2 Fødevarekontaktmaterialer. 8.8.3 Opsætning af udstyr 8.8.4 Vedligehold 8.8.5 Rengøring 8.8.6 Opbevaring af vand. 8.8.7 Måleudstyr til overvågning	44 45 45 46 47 47
8.9 EGENKONTROL VED GENINDVINDING OG GENBRUG AF DRIKKEVAND 8.9.1 Scenarie DV 1: Recirkulering af kølevand til ost. 8.9.2 Scenarie DV 2: Recirkulering af kølevand til ost med pasteuriseringstrin 8.9.3 Scenarie DV 3: Recirkulering af vand i CIP-systemer 8.9.4 Scenarie DV 4: Modstrams-CIP 8.9.5 Scenarie MV8: Disponibel	50 57 65

TECHNOLOGIES COVERED

- (Re)Claiming
- > Reverse osmosis (RO)
- > RO & Polishing (ROP)
- Membrane & BioReactor technology (MBR)

Microbiocidal treatments


- > Pasteurization
 - (\geq 72 °C, 15 s \rightarrow >10 log reductions)
- > UV-Light treatment
 - (\geq 50 mJ/cm² \rightarrow >4 log reductions)
- > [Chlorination]
 - (Technical water, only, due to risk of chlorates & other derivates)

5 WATER CLASSES

Class	Term	Sources	Quality
1	Drinking water	External water supply	All DW criteria met
2	Potable water	 Used drinking water Used potable water Other waters meeting quality criteria 	 All food safety related DW criteria Additional criteria acc. to history
3	Water of ROP quality (e.g. ROP water)	 RO water Condensates Used ROP water Mix of all above sources 	 Free of pathogens Contains only urea (insignificant amounts of other nutrients) Specific criteria according to intended use (e.g. corrosion)
4	Water of RO quality (e.g. RO water)	 Whey Milk permeate (from UF of milk, white water etc.) Whey permeat Used RO water Mix of all above sources 	 Free of pathogens Contains urea and small amounts of other nutrients Specific criteria according to intended use (e.g. corrosion)
5	Technical water	 Purified dairy waste water All above sources Contaminated drinking water 	 May contain nutrients May contain pathogens Specific criteria according to intended use (e.g. corrosion)

FOCUS OF HACCP-BASED CONTROL

TARGET OF CONTROLS	MEANS OF CONTROL
Minimize organic material Avoid fouling, wear and damage	Monitoring conductivity, turbidity or CODMonitoring of pressures
Avoid biofilm becoming a problem	• Operating time before cleaning (shelf life)
Prevent stagnant water	• Frequent visual check of piping & streams
Prevent microbial levels from exceeding unacceptable levels	 Microbiocidal treatment Maximum shelf life (validated) Controlled storage temperature
Document the UV treatment	
- Efficiency	Minimum UV doseMonitoring conductivity, turbidity or COD
- Safety	Automatic flow diversion valve
Document the efficiency of heat treatment	TemperatureFlowFDV
Verify the overall operation	Chemical and microbial testing

14 SCENARIOS COVERED

Reuse/recycling of drinking water

- DV1: Recycling of water for cooling of cheese
- DV2: Recycling of water for cooling of cheese combined with pasteurization
- DV3: Recycling of water in CIP systems
- DV4: Counter-stream CIP

Reclaiming and use of milk water

- MV1: RO water with no microbiocidal treatment
- MV2: ROP water with no microbiocidal treatment
- MV3: RO water with UV treatment
- MV4: RO water with pasteurization
- MV5: ROP water with UV treatment
- MV6: MBR Recovery of RO water (
 - for technical use
 - for food use, when combined with UV treatment
- MV7: ROP water H_2O_2 -treated

Reclaiming and use of water obtained from dairy waste water

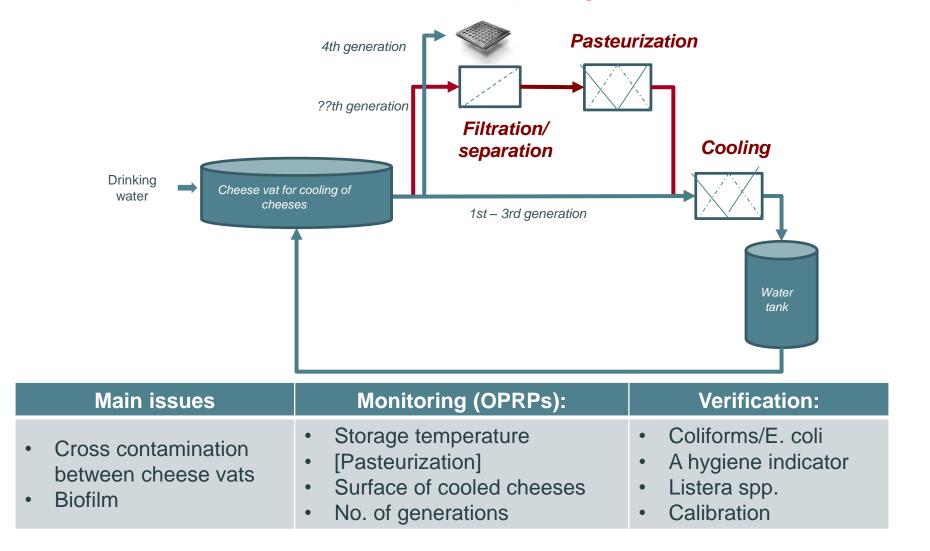
- SV1: MBR water for technical use
- SV2: MBR water for food use

Quality of waters Chemical criteria

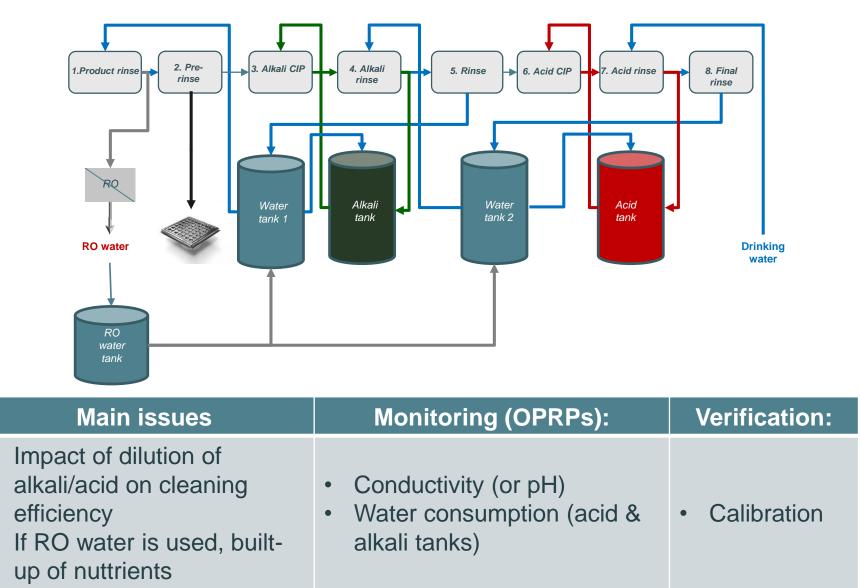
	Water of potable quality	RO water	ROP water	
COD		<100 mg O ₂ /L	<50 mg O ₂ /L	
Conductivity ¹ – food contact	<300 μS/cm	<200 μS/cm	<100 µS/cm	
- other	<1000 μS/cm	<200 μο/cm		
Turbidity - UV	<3 FNU	<3 FNU		
- final rinse	<1 FNU	<5 FNU	< 1 FNU	
- other	<5 FNU	<5 FNU		
Chloride - when stored	≤ 150 mg/L	≤ 150 mg/L	≤ 150 mg/L	
- as ingredient	≤ 900 mg/L			

¹⁾ If used to separate CIP:

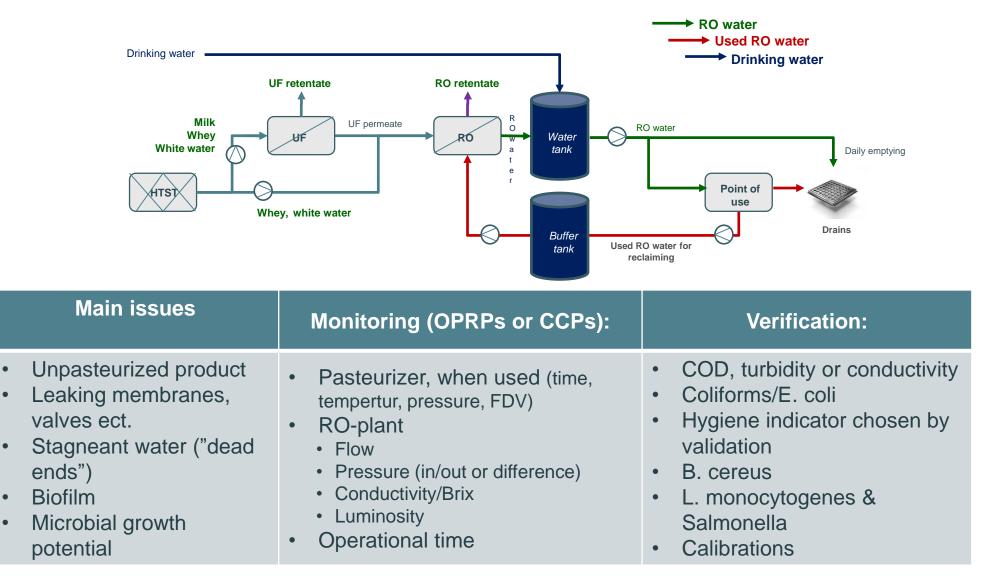
- Product rinse / clean water: 50 µS/cm
- Alkali / clean water: 40 µS/cm
- Acid / clean water: 30 µS/cm

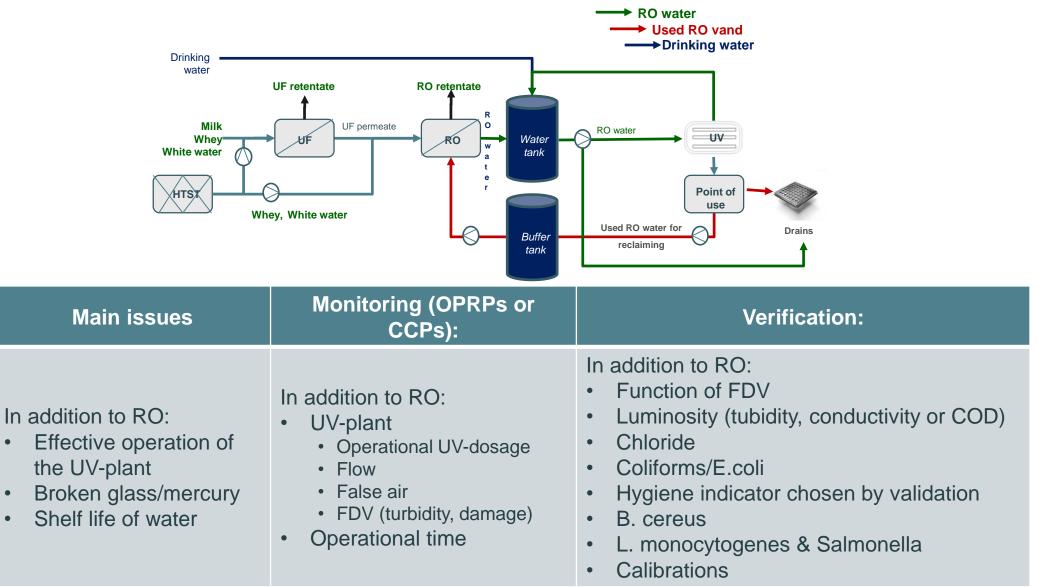

Quality of waters Microbiological criteria

	Water of potable quality	RO water	ROP water	
Salmonella		Absent in 25 ml		
S. aureus		m=1; M=10		
L. monocytogenes		Absent in 25 ml		
Bacillus cereus		Absent in 1 ml		
Coliforms	Absent in 100 ml			
E. Coli (if coliforms detected)	Absent in 100 ml Absent in 100 ml			
Total plate count 37 °C	m= 1; M= 20			
One of the hygiene indicators:				
Total plate count 22 °C	m= 20; M= 200		m= 10; M= 100	
 Psychrotrophic plate count (challenged) 	m= 1000; M= 100		m= 100; M= 10	
Enterobactriaceae	m= 10; M=	m= 1; M= 10		
Pseudomonas spp.	m= absent in 100 ml; M= 100			



Example 1: SIMPEL RECYCLING SCENARIO Recirculation of water for cooling cheese


Example 2: SIMPLE RECYCLING SCENARIO Counter-stream CIP


Example 3: MILK WATER SCENARIO

RO

Example 3: MILK WATER SCENARIO

DOCUMENTATION OF WATER SYSTEMS

	Initially	v drinking	g water	Initi	ally mil	k wate	er		Initially	dairy was	te water
Class when used: Documentation:	Drinking water	Potable water	Technical water	Water of potable quality	ROP water	RO water	MBR-RO water for food use	MBR-RO water for technical use	Water of potable quality	MBR water for food use	MBR water for technical use
Basic system docu	imentat	ion				<u> </u>	•			•	
Documentation for compliance with criteria for drinking water		х		х					х		
Description of the system and any treatments		Х	Х	DSG	DSG	DSG	DSG	Х	X	DSG	DSG
Hazard analysis				DSG	DSG	DSG	DSG		X	DSG	DSG
Operational docu	ments						•				
Procedures/instruct ions on appropriate use		Х	х	х	Х	Х	X	Х	Х	X	Х
Hazard control plan				DSG	DSG	DSG	DSG		X	DSG	DSG
Verification Plan	Х	Х	Х	DSG	DSG	DSG	DSG		Х	DSG	DSG
Records											
Monitoring results				Х	Х	Х	X		Х	Х	
Verifications results	Х	Х	X	Х	Х	Х	X		Х	X	X

DSG = Covered by the Dairy Sector Guide

DEFAULT SHELF-LIVES

Scenario	Ambient	Chilled/ warm
RO-water	1 day	
RO-water + UV (single treatment)	4 days	7 days
RO-water + UV (continous treatment)	14 days	21 days
RO-water + past.	7 days	14 days

ROP-water	2 days	
ROP-water + UV (single treatment)	7 days	12 days
ROP-water + UV (continous treatment)	21 days	28 days

VALIDATION PROTOCOL

Objectives:

- Determine the shelf-life (time between each emptying & cleaning of the system)
- Selection of the site-specific hygiene indicator

General approach (specified for each scenario):

- 1. Determine the validation period: >>the expected/default shelf-life
- 2. Operation until monitoring (operational parameters) shows stability
- 3. Frequent sampling and testing for:
 - Total plate counts 22 °C
 - Enterobacteriaceae
 - Psychrotrophic counts (challenged)
 - Pseudomonas
 - untill one or more of the limits are exceeded
- 4. Then, check that the water meets all (remaining) quality criteria

Shelf-life to be based on the indicator that first exceeds the limit The indicator that first exceeds the limit is chosen as the organism for hygiene verification

Summary

> Great potential of optimize water resources in dairying

- Reuse/recykling in CIP (all productions)
- Claiming of milk water (mostly powders/cheese)
- > Technology is well known to dairy staff
- > It is safe, if operated correctly
- Legal framework is changing (Codex, EU, DK)
- Great support from DK Competent Authorities
- > Still need of developing new data/fine-tuning existing scenarios:
 - Research conducted by DTU & KU
 - Coordinating data collection within the sector
 - Better on-line monitoring methods (microbiology)

Thank you!