

Production of biodegradable packages from whey surplus

Miguel Alborch
AINIA
Department of Packaging Technologies

Ainia	03
Current situation	06
Project Idea	09
Project Objectives	10
Project Overview	11

ainia Our specialties centro tecnológico **Know how Priority lines** • Food & Health Food technology • Food quality & Safety Biotechnology • Design and Industrial Production Nanotechnology • Sustainability, environment • Electronics and communications Consumer Chemical Technologies • Environmental and energetic technologies · Packaging technologies **Sectors** Chemistry Food Cosmetics **Energy Packaging** Pharma

> Current situation Environmental problem of plastics

Europe >70 Mill Tn plastic waste (>203 billions Tn CO2 eq) 60% food packaging.

Global trend towards the development of sustainable packaging

Need to **reduce dependence on petrol** in the production of polymers.

Environmental problem of whey surplus

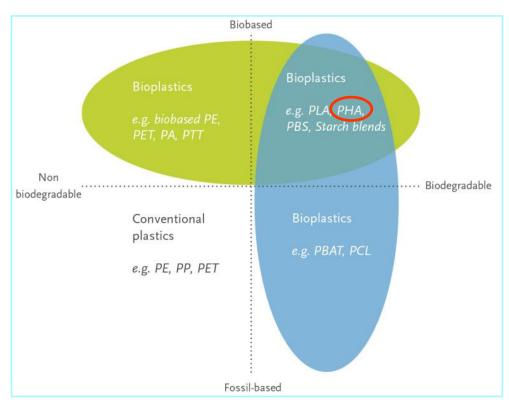
Cheese production: 9 kg whey / 1 kg cheese.

Europe > 50 Mill Tn whey (>20% considered as waste)

High BOD (difficult treatment)

Alternative of **revalorization**: Raw material for **PHB bioproduction**

Water 85%, proteins, lactose, vitamins y minerals


> Bioplastics

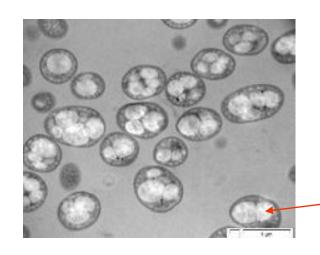
- Biobased
- Biodegradable
- Biobased & Biodegradable

Market is still dominated for over 99% by petrol-based plastic.

Redesign of bioplastics has the potential to reduce the use of fossil fuels, decrease CO2 emissions and decrease plastic waste.

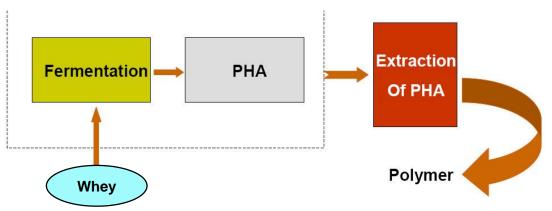
Main disadvantage: Cost (2-4 times higher)

Source: European Bioplastics


PHB-based packaging from whey

Reduction of CO2 emissions by the PHB use obtained from whey: demonstration in dairy products packaging.

PHB Granules


> PHB

PHB (polyhydroxybutyrate) is a biodegradable polyester that can be synthesized and intracellular accumulated by microorganisms as energy and carbon storage source. Could be obtained from different by-products of the food sector (whey, sugars, substrates rich in carbohydrates and nitrogen, etc.)

Advantages:

- > Biobased
- > Biodegradable
- > Compostable

> Project Idea

To demonstrate environmental and socio-economic benefits of a biodegradable packaging material with a lower environmental impact in comparison with current petrol-based packaging materials (PP).

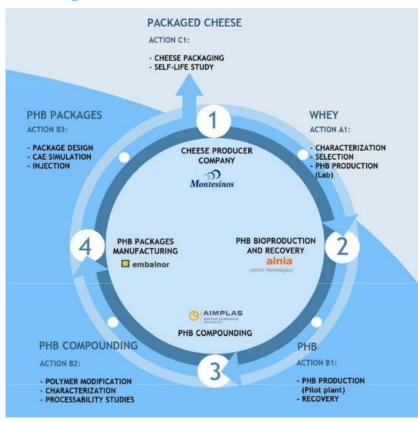
The biodegradable packaging material selected is **PHB** (Polyhydroxybutyrate) that will be **obtained from a by-product (whey)** that comes from the cheese industries; PHB will be **produced** using a process of microbial **fermentation**.

PARTNERS:

- AINIA RTD (COORDINATOR)
- AIMPLAS RTD
- CENTRAL QUESERA MONTESINOS
 Dairy products industry
- EMBALNOR
 Packaging industry
- NUTRIPACK (Packaging industry)

> Project Objectives

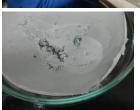
- O1 Demonstration of the environmental, technical and economical feasibility of performing PHB based packaging manufacturing processes from whey, considering all the chain steps involved:
 - 1) PHB bioproduction from whey,
 - 2) polymer compounding,
 - 3) PHB-based package manufacturing and
 - 4) use by the cheese maker.
- O3 **Definition** of the **PHB bioproduction and recovery processes** from whey at pilot plant scale. Study of the scale up conditions from pilot plant to industrial scale
- O4 Formulation, compounding and adjustment of the PHB polymer in order to improve its processability properties for injection moulding process
- O5 Development of 100% biodegradable PHB-based packages (trays) and demonstration of their application to dairy products: cheese packaging.



PHB-based packaging from whey

Reduction of CO2 emissions by the PHB use obtained from whey: demonstration in dairy products packaging.

> Project Overview



Circular Economy Project: The industry that generates whey becomes the beneficiary of the new packages tailored to the needs of their products

> Characterization and selection of whey streams

	WHEY TYPE	рН	ACIDITY (°D)	FAT (%)	PROTEIN (%)	LACTOSE (%)	DRY MATTER (%)	COD (mg O ₂ /I)	BOD (mg O ₂ /I)	TOTAL ORGANIC CARBON (g/100g)	TOTAL ORGANIC NITROGEN (g/100g)
1	ACID (NO CONCENTRATED)	4,39	49,18	0,07	0,99	4,43	6,56	71880,00	15525,00	3,20	0,18
2	ACID (RO CONCENTRATED)	4,37	92,98	0,18	2,63	7,58	14,66	185250,00	41900,00	8,63	0,40
3	LACTOSE (NO CONCENTRATED)	6,49	8,62	0,06	0,21	4,79	5,35	52666,67	15666,67	2,40	0,02
4	LACTOSE (RO CONCENTRATED)	5,95	20,82	0,07	0,84	8,81	14,08	160500,00	35000,00	7,40	0,08
5	SWEET (NO CONCENTRATED)	6,52	9,51	0,54	0,84	4,45	6,48	67625,00	20750,00	3,08	0,08
6	SWEET (UF CONCENTRATED)	6,49	14,90	2,84	3,41	2,64	10,78	147225,00	24600,00	5,87	0,52
7	EXHAUSTED	5,35	27,94	0,28	0,71	3,79	4,31	80533,33	19800,00	3,00	0,11
8	ACID + LACTOSE (NO CONCENTRATED)	5,41	20,79	0,03	0,51	4,80	5,67	63666,67	35333,33	2,57	0,06
9	ACID + LACTOSE (RO CONCENTRATED)	4,94	56,69	0,04	1,39	8,82	15,24	165666,67	38100,00	8,40	0,20
10	FRESH	6,5	9,52	0,39	0,96	4,65	6,64	116800,00	26500,00	3,70	0,23
11	MATURED	6,5	9,54	0,37	0,77	4,65	6,64	86275,00	21125,00	4,67	0,18

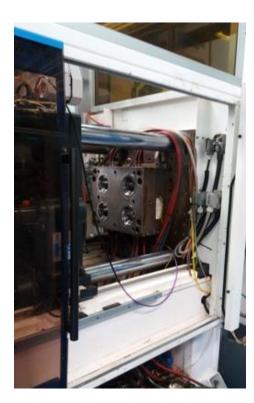
> Bioproduction of PHB:

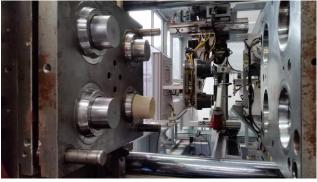
Integrated Bioproduction System up to 300 L that includes all stages of the process

> Polymer modification

Selection of **optimal additives** (in accordance with current European and American food contact materials legislation) to **protect polymer degradation** and to **improve** their **processability** such as antioxidants, plasticizers, release agents, lubricants, nucleating agents.

	Reference PP	Synthesis PHB	Modified PHB
Flexural modulus (MPa)	1750	3750	1050
Elongation at break (%)	10	5,9	12
Tensile strength (MPa)	30	38,8	23,4
Impact resistance at 23°C (kJ/m²)	70	10	67
Impact resistance at 0°C (kJ/m²)	50	2	36
HDT (°C)	100	129	113


Rigidity of the material has been reduced and the impact resistance has been significantly improved, especially at low temperatures.



> Package manufacturing

Standard injection moulding process was optimized for the PHB compound.

Packages were manufactured with current industrial injection equipment

> Package validation

Packages are being characterized (thermal, chemical and mechanical properties) in order to validate the end properties of developed PHB cups and comparing with PP cups.

- Oxygen and Water vapour transmission rate.
- Thermoresistance
- Compression
- Drop resistance
- Thickness distribution
- Migration test: Overall migration with different simulants and storage conditions

> Cheese packaging validation

Requirements of selected cheese product (cottage cheese) have been stablished.

Goat cottage cheese

- Package dimensions: Base: D: 7,5 8,5 cm. L: 5,7 cm Cover: D: 9 cm. L: 1 cm
- Weight: 200 g
- MAP (Modified Atmosphere Packaging) is required. Requirement of gases and water barrier
- Hot filling.
- Need of light protection (opaque material)
- Storage: 2-4°C, 80% RH
- 30 days shelf-life

Industrial packaging process validation. Shelf-life studies

- Physical analyses: Texture.
- **Sensory analyses:** smell, taste, colour and consistency.
- **Chemical analyses**: pH, acidity, dry matter and fat.
- **Microbiological analyses**: Escherichia coli, Salmonella, Listeria, Staphylococcus aureus.

Thank you for your attention

Miguel Alborch (malborch@ainia.es)