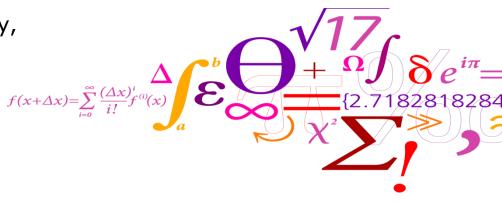


Mejeriteknisk Selskab, 7th December 2017

Predictive microbiology for the dairy industry

Veronica Martinez-Rios, Ioulia Koukou, Marie Jørgensen, Sarah Kadhim,

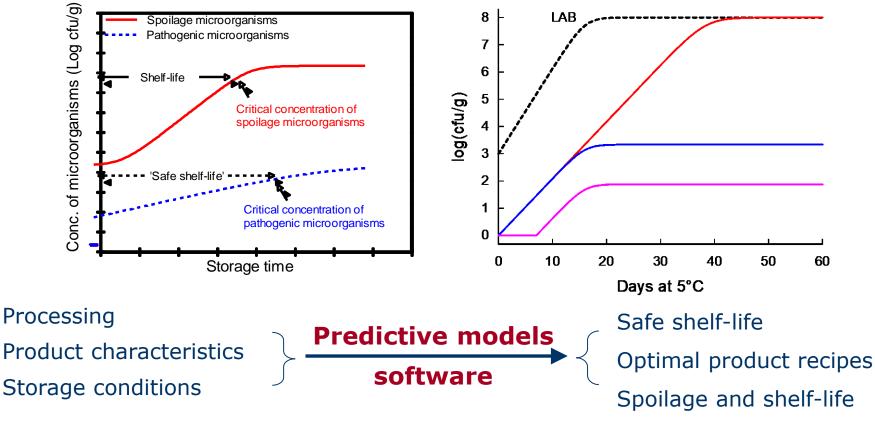

Paw Dalgaard

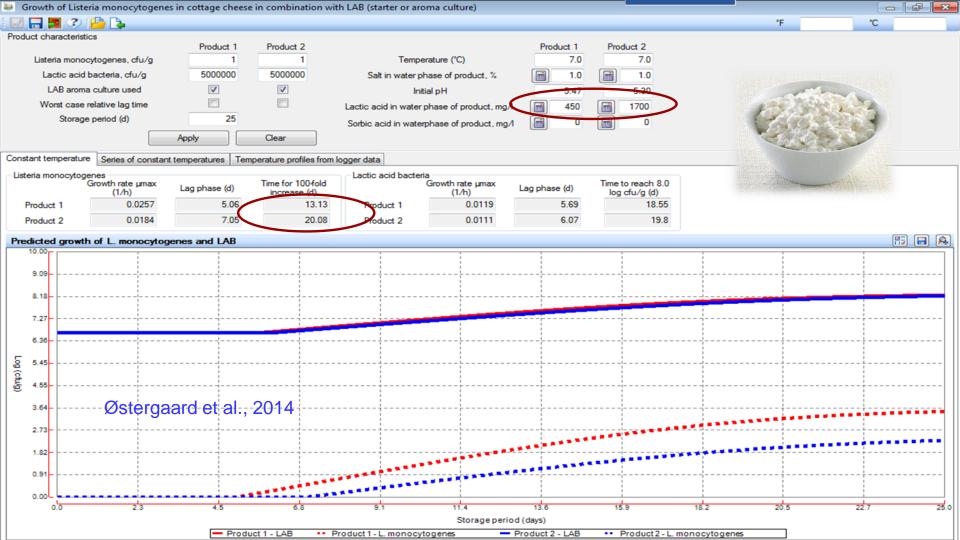
Analytical and Predictive Microbiology,

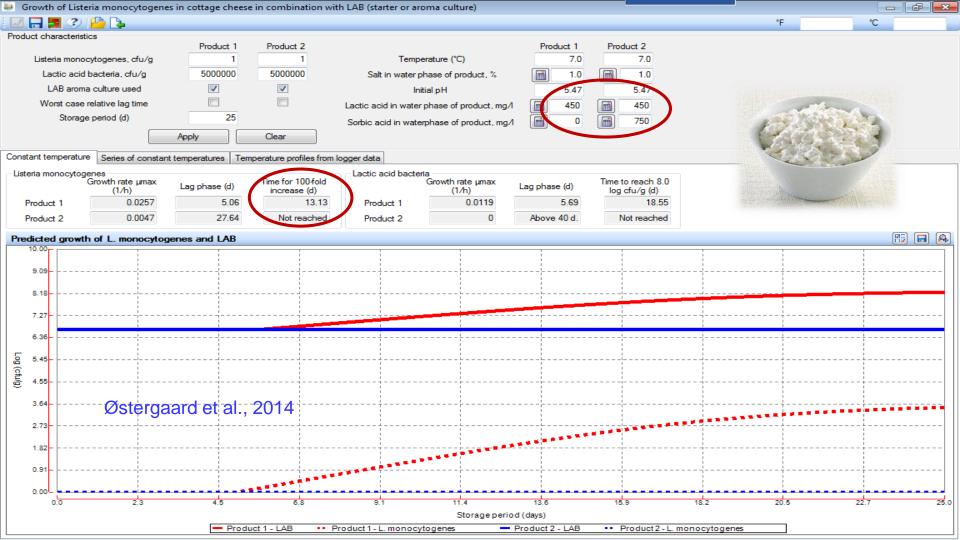
National Food Institute (DTU Food),

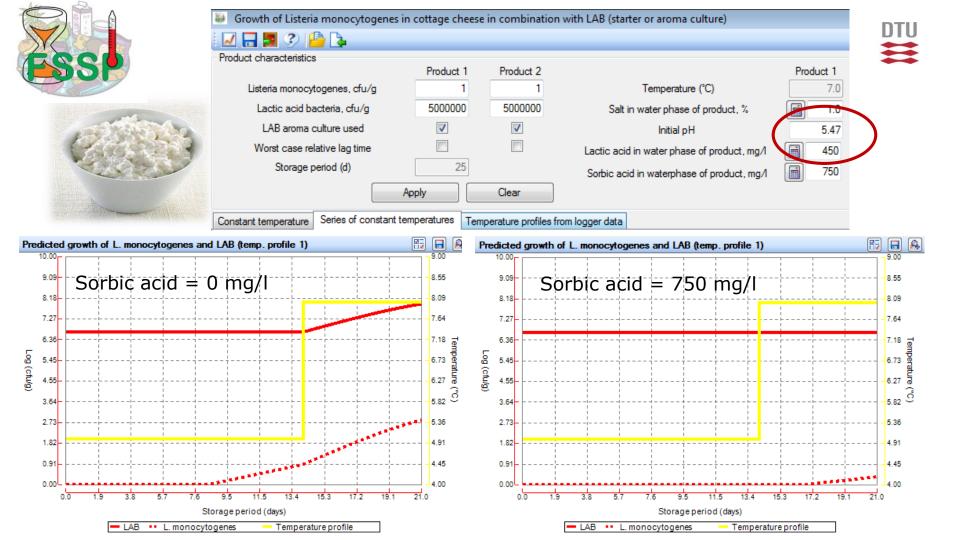
Technical University of Denmark

DTU Food National Food Institute

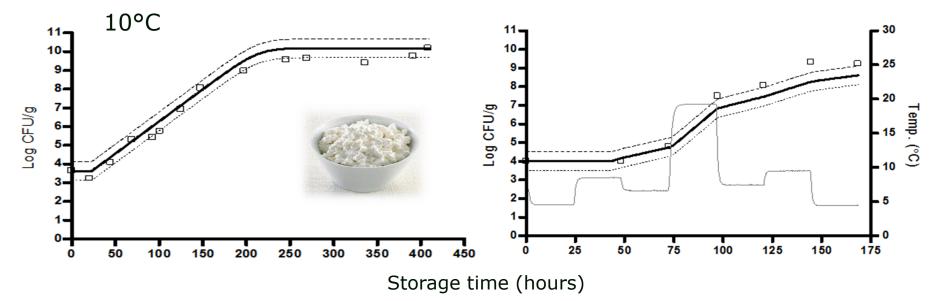



Predictive microbiology for the dairy industry


Outline


- Application of predictive food microbiology
- Evaluation of models and software
- New cardinal parameters and evaluation
- Examples of application for dairy products
- Conclusions and perspectives

Predictive microbiology - concept



Pseudomonas – Validation of growth model

Predictions are compared with growth measured in products at constant and varying storage temperatures

Predicted and observed growth of psychrotolerant *Pseudomonas* in cottage cheese with dressing with aroma culture

Martinez-Rios et al., 2015

• 111

EU regulation (EC 2073/2005) and documentation

- Predictive mathematical modelling can be used to support documentation of compliance with microbiological criteria when based on physico-chemical product characteristics; storage and processing conditions, contamination and foreseen shelf-life
- Models are increasingly used by the seafood and meat sectors
- Development and validation of predictive models with a wide range of applicability have been more successful for the seafood and meat sectors than for the dairy sector

Models and software for *L. monocytogenes*

Type of model	Type of products	Factors	References	
Growth	Liquid dairy products	T, pH, a _w , nitrite, CO ₂	Augustin et al. 2005	
	Cheese	T, pH, a _w , nitrite, CO ₂	Augustin et al. 2005	
	Ready-to-eat meat and seafood	T, pH, NaCl, phenol, nitrite, CO2, AAC, DiAC, LAC	Mejlholm and Dalgaard, 2009	
	Cottage cheese	T, pH, NaCl, LAC, SAC and LAB*	Østergaard et al. 2014	
	Smear soft cheese - (past. or un-past. milk)	T, pH, a _w	Schvartzman et al. 2011	
	Food	T, pH, aw, LAC	Sym ´Previus	
	Cheese and dairy products	T, pH, aw	te Giffel and Zwietering, 1999	
Inactivation	Cheese	T, pH, a _w , LAC, SAC	Coroller et al. 2012	

* Inhibiting effect of lactic acid bacteria (LAB)

DTU Food, Technical University of Denmark

Evaluation of models and software

Evaluation of *L. monocytogenes* models and software by using data collected from the scientific literature for <u>different groups of cheeses</u>

Prevalence of *Listeria monocytogenes* in European cheeses: A systematic review and meta-analysis

Veronica Martinez-Rios^{*}, Paw Dalgaard

National Food Institute (DTU Food), Technical University of Denmark, Kgs. Lyngby, Denmark

Different groups of cheeses

	Survey year	Number of L. monocytogenes positive (s)/total number of cheese samples (n)					
References		Fresh	Ripened	Veined	Smear	Brined	
Filiousis et al., 2009	2005-2006		4/20)	0/10	
Little et al., 2009	2006-2007		2/1240	A AND A	Brined (11.8%	% CI: 3.5-33.3)	
O'Brien et al., 2009	2007	0/29	1/104	RICOTTA SALATA	14/79		
Di Pinto et al., 2010	2007-2009	Children and Children			0.40.43		
Pesavento et al., 2010	2008	A A A A A A A A A A A A A A A A A A A	Smea	r (5.1% CI: 1	9-13.1)		
Prencipe et al., 2010	2005-2006	1/437	1/449	21/444	24/802		
Angelidis et al., 2012	2010	0/83		0/38	0/16		
Lambertz et al., 2012	2006-2	Veined	l (2.4% CI: 0.9)-6 3)	0/62		
Dambrosio et al., 2013	2009	0/404					
Doménech et al., 2013	2005-2009	0/77					
Parisi et al., 2013	2008-2010	3/70					
Gyurova et al., 2014	21 Rinen	ed (2.0% CI:	0 8-4 9)	0/7		0/34	
Doménech et al., 2	p-2012		5/100				
Schoder et al., 2015	NSª		1/15	0/50	1/22		
Spanu e	2011-2013		3/50			7/33	
	esh (0.8% CI: 0.3	-1.9) 21	0/106	8/190	11/177		
Corones can 10	NS^a					15/87	
Total		17/2580	15/2101	32/1218	50/1158	24/164	

DTU Food, Technical University of Denmark

Martinez-Rios et al., 2018

Evaluation of growth models and software with literature data

Models are evaluated/validated by comparison of measured/observed and predicted values (kinetic parameters or shelf-life). The comparison can be graphical or mathematical

Bias factor (B_f) $= 10^{\frac{\sum \log(\mu - predicted / \mu - observed)}{n}}$ $\frac{\sum |\log(\mu - predicted / \mu - observed)|}{n}$

Conclusions

- Models for growth of *L. monocytogenes* in dairy products often include the effect of temperature, pH, salt/aw and some organic acids
 - Østergaard et al., 2014 included the inhibiting effect of LAB and we recommend to use this model when LAB are present
- Cardinal parameter model including the effect of specific dairy components (melting salts and gluconic acid) have been developed for *Listeria monocytogenes* in an on going project DAIRY-PREDICT (2015-2019)
 - the model can be used for re-formulation of product, simulation of storage conditions and documentation of safety

Perspectives

- Anti-listerial compounds in fermented dairy products (peptides and bacteriocins) are interesting to include in extended model
- To benefit from the potential of predictive models further developments are needed within the dairy sector
 - Models for human pathogens other than *L. monocytogenes*
 - Collaboration between processors, culture-producers and scientists to include effects of dairy specific factors in validated models
- Help to establish safe shelf-life