Mejeriforskningens Dag

Concepts for Optimized and Innovative Applications of Membrane Separation in Dairy Technology

Ulrich Kulozik

2. marts 2017, Billund

Food and Bioprocess Engineering

Energy requirements for concentration and drying

The concept: Separation of effects by using a membrane cascade

Flux reducing phenomena during RO/NF of milk/whey

- crossflow velocity Concentration polarization layer $\Delta \Pi$ $c_{2} = c_{1} e$ Deposited protein layer Δp_A filtrate UF of milk/whey → NF/RO of UF permeate crossflow velocity crossflow velocity Δp_A
- Concentration of proteins by UF at a low pressure level
- ✓ UF not affected by osmotic pressure

ΔΠ

Concentration of osmotically active

better investment of Δp_{TM}

solutes by RO w/o deposit formation \rightarrow

Extended processing scheme for the concentration of milk/whey using multiple membrane cascades

Flux levels of different UF systems for milk protein concentration

Impact of transmembrane pressure on flux for skim milk and protein-free milk serum

Filtration plants for measuring the distribution of flux and protein permeation along a membrane

Effect of transmembrane pressure in MF on flux and permeation using ceramic membranes

[Modifiziert nach Bacchin, 2004; Piry, 2011]

Experimental SWM prototypes for the assessment of flux and deposit formation inside a industrial module

Betrieb des sektionierten Moduls II: Technische Realisierung

Experimental SWM prototypes for the assessment of flux and deposit formation inside a industrial module

Visualization of deposit formation on membrane surfaces by staining techniques

Impact of upstream MF on steady-state flux for UF of whey

1.2 m ceramic tubular membrane

found at $\geq 0.5 \ \mu m$ pore size

2,0

Recording of rinsing processes as function of process conditions

- Spacer size
- Viscosity
- Feed volume flow
- Transmembrane pressure
- Feed volume flow
- Viscosity
- SWM diameter

- 1. Feasible operating points
- 2. Optimal operating points
- 3. Rinsing characteristics

Complexity of flow induced by fluidically demanding geometry of SWMs

Example: Biofouling in SWMs

Visualization of superficial velocity components by NMR-microscopy

→ without biofouling (left): even flow → with biofouling (right): uneven flow

Complexity of flow: Uneven flow in spacer-filled flat and curved channels.

Rinsing stop according to predefined criteria

Volume flow as a function of concentration factor and spacer geometry

Should the spacer be selected based on flux, rinsing behaviour or other factors?

Alternative processing modes in crossflow membrane technology

Alternative deckschichtabtragende Verfahrensweisen in der Crossflow-Filtration von Proteinen und Zellsuspensionen

