Accelerated Cheese Ripening

A review of various approaches

Fergal P. Rattray, Professor Department of Food Science

5 April, 2018, Osteproduktion i praksis, Billund

Approaches used

- 1. Elevated ripening temperature
- 2. Addition of exogenous enzymes
- 3. Addition of adjunct or attenuated cultures
- 4. High-pressure (HP) treatment

Accelerated cheese ripening

Inventory costs

Capital costs

REDUCE -> Ripening Time

NO CHANGE -> Flavour
-> Texture
-> Safety

- > Subject of much scientific investigation since the 1950s
- ➤ Costs approximately €55 (minimum) per tonne of Cheddar per month (Upadhyay and McSweeney, 2003)

Example: UK Cheddar market

235,000 tonnes Cheddar produced in 2017

- ➤ Mature (6 months ripening)
 - > 118,000 tonnes x €55 x 6 months
 - = €39 million
- > Extra mature (12 months ripening)
 - > 46,000 tonnes x €55 x 12 month
 - = €30 million

Total ripening costs €69 million (estimate)

Biochemical changes during ripening

Approaches used

- 1. Elevated ripening temperature
- 2. Addition of exogenous enzymes
- 3. Addition of adjunct or attenuated cultures
- 4. High-pressure (HP) treatment

1. Elevated ripening temperature (Gouda)

1. Elevated ripening temperature (Cheddar)

T20-2	20°C x 32 weeks
T17-2	17.5°C x 32 weeks
T15-2	15°C x 32 weeks
T20-1 T17-1	20°C x 8 weeks, 8°C x 24 weeks 17.5°C x 8 weeks, 8°C x 24 weeks
T15-1	15°C x 8 weeks, 8°C x 24 weeks

Control 8°C x 32 weeks

Proteolysis increase with elevated ripening temperature

1. Elevated ripening temperature (Cheddar)

T20-2	20°C x 32 weeks
T17-2	17.5°C x 32 weeks
T15-2	15°C x 32 weeks
T20-1	20°C x 8 weeks, 8°C x 24 weeks
T17-1	17.5°C x 8 weeks, 8°C x 24 weeks
T15-1	15°C x 8 weeks, 8°C x 24 weeks
Control	8°C x 32 weeks

Mature flavour score increased with elevated ripening temperature

1. Elevated ripening temperature (Cheddar)

1. Elevated ripening temperature

- ADVANTAGES
 - > Technically simple
 - No legal barriers
 - No cost (perhaps saving)

- DISADVANTAGES
 - ➤ Non-specific
 - Risk of off-flavours
 - > Risk of microbial spoilage
 - ➤ NSLAB grow faster when temperature is raised above 8°C

- Very high quality milk is required
- > Very careful and frequent (monthly) cheese grading required

What about temperature reduction?

- > Huge demand at Christmas
 - ➤ Product produced in autumn and then frozen at -20°C for up to 3 months.
 - > Thawed prior to market.

Approaches used

- 1. Elevated ripening temperature
- 2. Addition of exogenous enzymes
- 3. Addition of adjunct or attenuated cultures
- 4. High-pressure (HP) treatment

2. Addition of exogenous enzymes

- ➤ Principle/assumption
 - > Ripening is catalyzed by enzymes rather than viable cells
 - > => add specific enzymes or cocktail of enzymes
 - > => select enzyme(s) for pathway(s) to accelerate (proteolysis, lipolysis, glycolysis, amino acid catabolism)

2. Addition of exogenous enzymes

Table 19.1 Enzyme preparations, other than rennets, commercially available for cheese or enzyme-modified cheese (modified from Wilkinson and Kilcawley, 2002)

Principal enzymatic activity	Trade name	Host organism/source	Company
Aminopeptidase	Accelase ^{TMa} , Savorase [®] , Debitrase [®]	Lactococcus lactis Rhizopus oryzae	Rhodia Food
Aminopeptidase	Acid Protease A	Aspergillus niger	Amano Enzymes
Prote(in)ase	Acid Protease II Bioprotease A conc Bioprotease N 100 Bioprotease P conc Fermizyme® B 500 FlavorAgeb Flavorpro 192 Flavourzyme Neutrase Peptidase 'R' Amano Promod 24L Promod 215P Protease 'A' Amano 2 Protease M Protease N Prozyme 6 Sternzyme B5021 Sternzyme B5026	Rhizomucor niveus Aspergillus niger Bacillus subtilis Aspergillus oryzae Bacillus subtilis Aspergillus sp. Aspergillus var. strains Aspergillus oryzae Bacillus subtilis Rhizomucor oryzae Bacillus subtilis Aspergillus sojae Aspergillus oryzae Aspergillus oryzae Bacillus subtilis Aspergillus oryzae Aspergillus oryzae Aspergillus oryzae Aspergillus melleus Aspergillus niger Aspergillus oryzae	Amano Enzymes Quest International Quest International Quest International DSM Chr Hansen Biocatalysts NOVO NOVO Amano Enzymes Biocatalysts Biocatalysts Biocatalysts Amano Enzymes Amano Enzymes Amano Enzymes Amano Enzymes Amano Enzymes Amano Enzymes Stern-Enzyme Stern-Enzyme
Lipase	Capalase [®] Italase [®] Kid Lipase Lipase M 'Amano' 10 Palatase [®] 20000 L	Animal Animal Animal Rhizomucor javanicus Rhizomucor miehei	Degussa Bioactives Degussa Bioactives Chr Hansen Amano Enzymes NOVO

 $^{^{\}rm a}$ Can also be mixed with enzymes from other sources. $^{\rm b}$ Proteinase-lipase preparation.

2. Addition of exogenous enzymes: addition points

17

2. Addition of exogenous enzymes: Cheddar

VAT 1
CONTROL

VAT 2 + **AM317** (protease, lipase and peptidase) VAT 3
+ **CPG**(carboxypeptidase from *Aspergillus niger*)

VAT 4 + **AHC50** (protease, peptidase and aroma enzyme))

> Cheese ripened for 1, 14, 28, 56 and 112 Days at 8°C.

2. Addition of exogenous enzymes: Cheddar

Proteolysis and Lipolysis

Age (days)	Control	AM317	CPG	AHC50
pH4.6-SN	2.02 (0.02)-	4.01 /1.02\-	2.2 (0.24)-	4.00 (0.27)-
1	3.93 (0.82)a	4.81 (1.03)a	3.3 (0.24)a	4.09 (0.27)a
14	6.49 (0.61)a	Increased	pH4.6 solub	le N ³⁴ (1.77)b
28	8.29 (0.86)a	12,55 (0,24)0	7.54 (0.15)a	12.77 (1.47)0
56	11.72 (0.96)a	18.11 (0.36)b	11.04 (0.06)a	18.46 (1.87)b
112	16.40 (1.28)a	24.16 (0.64)b	15.49 (0.29)a	26.38 (0.55)b
PTA-SN				
1	0.74 (0.07)a	0.76 (0.07)a	0.66 (0.10)a	0.75 (0.10)a
14	1.19 (0.18)a	1.36 (0.02)a	1.24 (0.04)a	1.53 (0.34)a
28	1.48 (0.26)a	1.60 (0.10)a	1.49 (0.05)a	1.77 (0.18)a
56	2.13 (0.28)a	2.46 (0.07)a	2.13 (0.13)a	2.65 (0.34)a
112	3.47 (0.56)ab	3.89 (0.09)b	3.29 (0.05)a	4.57 (0.33)c
TFAA				
1	905 (260)a	1037 (116)a	980 (104)a	1069 (37)a
14	2153 (390)a	2878 (581)a	2727 (337)a	3175 (722)a
28	3013 (134)a	Increased	free amino	acids _{8 (165)a}
56	4609 (460)a	5662 (445)ab	5397 (563)ab	6384 (245)b
112	7995 (983)a	9862 (914)b	8966 (778)a	11035 (281)b
TFFA				
1	752 (88)a	747 (91)a	745 (21)a	763 (72)a
14	724 (45)a	750 (83)a	723 (38)a	745 (55)a
28	759 (37)a	No change	e free fatty a	
56	729 (7)a	712 (28)a	734 (51)a	733 (44)a
112	808 (50)a	811 (78)a	813 (58)a	829 (33)a

Texture

AHC50 and AM317 cheeses too soft and brittle

2. Addition of exogenous enzymes

- > ADVANTAGES
 - > Can be extremely powerful
 - Specific action (for some enzymes)
 - > Flavour direction

≻DISADVANTAGES

- ➤ Difficulty of uniform distribution
- ➤ Off flavours
- ➤ Limited range of suitable enzymes
- Certain enzymes require cofactors
 - Especially amino acid converting enzymes
- > Possible side activities
- **≻**Cost
- > Legal constraints

Approaches used

- 1. Elevated ripening temperature
- 2. Addition of exogenous enzymes
- 3. Addition of adjunct or attenuated cultures
- 4. High-pressure (HP) treatment

- ➤ Principle/theory
 - Use the full enzyme complement of Lactic Acid Bacteria (LAB) cultures to simultaneous increase
 - Proteolysis
 - > Petidolysis
 - > Amino acid catabolism

POWER AND BALANCE

Threonine ATP, NADH Homoserine Succinyl-CoA CoA-SH Volatiles from methionine metabolism O-Succinylhomoserine O-Acetylhomoserine Pyruvate+NH Adenosine L-Homocysteine L-Cystathionine 11 Methyl-THF α-Ketobutyrate S-Adenosylhomocysteine 2-Hydroxyl 4-methylthiobutyr L-Cysteine CO + Hethanethiol Methylated substrate Glutamine 2α-Ketoglutarate♥ COO ATP Substrate CH₃-S-CH₂-CH₂-C-COO 4-Methylthio 2-oxobutyrate CH₂=CH₂ CH₃-S-CH₂-CH₂-CCOH ◀ methionine Ethylene 3-Methylthiobutyrate 1/20₂ L-Methionine →α-Ketobutyrate ◀ HDCO2 CH,-S-CH,-CH,-CH S-Methyladenosyl-HD Methional propylamine **D-Methionine** 1, 8 HD Spermine S-Methylpropylamine HD CH,-SH Methanethiol CH,-S-S-CH, Dimethyldisultide 13 Spermidine CH,-S-S-S-CH, Dimethyltrisulfide CH,-S, Methane S-Methylthioacetate

- ➤ 1. Adjunct cultures
 - > Live
 - Wild type cultures
 - > Selected classical mutants
 - > GMO
- > 2. Attenuated cultures
 - Partially inactivated/dead
 - > Heat shocked
 - > Freeze shocked

Critical that the culture does not affect normal acidification rate

Acidification rate of starter culture

Principal suppliers of Dairy Cultures

Company	Market share (estimate)	Country	Founded
Chr. Hansen A/S	1	Denmark	1870
DuPont Danisco	2	USA	1802
DSM	3	Netherlands	1902
CSK Food Enrichment	4	Netherlands	1905
Sacco	5	Italy	1872

> 8 Gouda-type cheeses with 8 different culture combinations

Culture combination		Lc. lactis (O)	Lb. casei (C)	Lb. helveticus (H)	Lb. rhamnosus (R)	
Oª	Control	+	-	-	-	
ОС	Single	+	+	-	-	
ОН	Single	+	-	+	-	
OR	Single	+	-	-	+	
ОСН	Multiple	+	+	+	-	
OCR	Multiple	+	+	-	+	
ORH	Multiple	+		+	+	
OCRH	Multiple	+	+	+	+	

^a Used as control, + Bacterial culture is included in the culture combination, - Bacterial culture is not included.

0

OC

ОН

OR

OCH

OCR

ORH

ORCH

- Cheeses ripened for 1 week at °C, 4 weeks at 13 °C, for 4 weeks at 9 °C.
- Microbiological enumeration
- ➤ Aroma analysis (DHS-GC-MS)

Cheese microflora

Peter Beierholm and Jeppe Frans Steendahl Sørensen, (2017), MSc thesis, KU

Gouda-type Cheeses – GC-MS Aroma Analysis

- ➤ ADVANTAGES
 - > Balanced flavour
 - > Powerful effect
 - > Flavour direction
 - > Technically simple
 - > Flexible
 - ➤ No legal constraints

- **≻**DISADVANTAGES
 - **≻**Cost

Approaches used

- 1. Elevated ripening temperature
- 2. Addition of exogenous enzymes
- 3. Addition of adjunct or attenuated cultures
- 4. High-pressure (HP) treatment

4. High-pressure (HP) treatment

- 1. HP used to accelerate cheese ripening
- 2. HP treatment on the functional and rheological properties of Mozzarella cheese
- 3. HP used to control *C. tyrobutyricum* in late blowing in semi-hard cheese
- 4. HP treatment for reduced-fat Cheddar cheese
- 5. HP to control *Listeria monocytogenes* in fresh cheese
- 6. HP viability of Streptococcus thermophilus bacteriophages

4. High-pressure (HP) treatment

Mariana Trench depth of 11,000 meters => 110 MPa

Cheese application

- ➤ High pressure-Short time: 300-600 MPa x 5-20 min
- > Low/Moderate pressure-Long time: 50-200 MPa x 4-72 hours

4. High-pressure (HP) treatment: what happens in cheese?

- > 1. HP alters enzyme structure
- > 2. HP causes conformational changes in the casein matrix
 - More susceptible to proteolysis
- > 3. HP promotes bacterial lysis
 - Relase of intracelluar enzymes
- > 4. HP modify water distribution and increase pH
 - Enhances enzymatic activities

4. High-pressure (HP) treatment: Cheddar

						Commercial cheese (6 months)
Pressure (MPa)	50	100	500	2000	3000	None
Free amino acids (mg/g)	16.2	20.3	26.5	25.3	5.2	21.3
Taste	Insufficient	Superior	Considerably superior	Superior		Considerably superior

Similar taste and free amino acid content as a 6 month cheese obtained after 3 days

Cheese technology

- ➤ 1. High pressure treatment for 72 hours
- > 2. Held at 25°C
- > 3. A 10-fold higher starter inoculation level

Patent: US005180596A (Fuji Oil Co., Ltd.)

Accelerated Cheese Ripening: Perspectives

- > 1. Elevated ripening temperature simplest and frequently used method
 - > requires milk of good microbiological quality.
- > 2. Exogenous enzymes are not in widespread use
 - high cost and over-ripening tendency
- > 3. Adjunct or attenuated cultures
 - > perhaps offers the best method
 - > frequently used
 - > real benefit to cheese producer
- > 4. High Pressure (HP)
 - > Significant capital costs involved and batch nature of unit operation

