CLEANING OF MEMBRANES A SPECIAL CHALLENGE REQUIRING SPECIAL SOLUTIONS

LARS HOUBORG **REGIONAL R&D/APPLICATIONS MANAGER**

14-06-2018

Whey is a Major Source of Protein

Percentage of Survey Respondents Who Used Protein Sources in Past 6 Months

Steve French, Managing Partner & Owner, Natural Marketing Institute

*2016 Q2 - 2017 Q1

Global whey protein market was valued at \$6 **billion** in 2016;

Projected to reach **\$9 billion** by 2022 a CAGR of 7.6%

2%

protein*

Market requirements and Business Drivers

TRENDS

- Consumer tastes are changing: healthier eating, food with functional ingredients
- Food safety: consumer demand for *ingredient*, manufacturing and label transparency is driving increased need for processors to ensure quality assurance

OPPORTUNITIES

- **Dairy proteins** have nutritional and functional advantages compared to other protein sources*
- **Demand** is driven by the need for **recombined** products, fortification, and nutrition for infants and sensitive groups*
- Whey powders will remain the **leading dairy** • ingredient category in years to come*

QUALITY

- Producing **high-quality** dairy products
- Residue-control, effective rinsing
- Hygienic production Micro counts, Pathogens, Spore counts

PRODUCTIVITY

- Enhance **capacity** and CIP **efficiency**
- Optimize **membrane performance**
- Reduce operational costs (water, energy, chemicals & labor)

Whey processing requires membrane operations

ECSLAB

4

Product	Conc. Factor (wet- dry)
Whey	20
WPC 35	58
WPC 65	108
WPC 80	133
WPC 90	156
Lact-albumine	310

Critical Plant Metrics For Producers Using Membranes

UTILITY EXPENSES related to water, thermal electrical energy

Membrane Cleaning Challenges

Membrane replacement is expensive

Multi-step cleaning process can be complicated

One Page about Ultrasil[™] MembraneCARE 2.0

Next-generation membrane cleaning program for dairy manufacturers producing premium-quality products. It consists of newly formulated acid, alkaline, and patent-pending enzyme cleaners that help customers:

- ▲ Increase membrane capacity up to 10%
- **Clean faster** with enhanced rinsing, reducing CIP cycle times up to 15%
- **Reduce water and energy consumption** up to 15%
- **Reduce chemical degradation of membrane**, extending asset life up to 10%
- **Reduce dependence on surfactants** through more effective enzyme cleaning
- **Reduce environmental impact**, as the cleaners are formulated without Chlorine, EDTA, Nitric Acid or Phosphoric Acid

Ultrasil[™] MembraneCARE 2.0

Alkaline

Protein and carbohydrate removal

Removes tough soils, while boosting pretreatment effectiveness and preventing equipment surfaces from blackening

Enzyme

Protein breakdown

Active ingredient that penetrates soils, helping to break them up for better cleaning results

EC®LAB

- PO₄-free, low P

- NO₃-free, low N
- EDTA-free
- Chlorine free
- No oxidizers
- Surfactant-free rinse water
- Low foaming
- Longer membrane lifetime through less chemical degradation

Acid Mineral descaling Supports Protein removal Eliminates the buildup of minerals on surfaces

Membrane Life Extension

- Five-year simulated run using a polymer to mimic protein
- Realized a 40% to 60% performance improvement, in terms of protein passage
- Indicates the potential to extend life of membranes

Rinsability in Membrane CIP

Individual results will be plant design dependent.

Volume [L]

New products

Baseline

Productivity

- Ultrafiltration of whey is the bottleneck process
- Characterized as variable pressure crossflow filtration
- Optimize CIP downtime
- Optimize Throughput
 - Substrate filterability
 - Flow rate
 - Temperature
 - Concentration factors
 - Optimized Membrane permeability

Time (h)

Overall Environmental Impact

Case 1: CIP downtime optimization

- UF Plant processes sweet whey to WPC 35
- Plant processes 7 batches per week
- The CIP regime could be reduced by 22% and offers now a 60 min shorter CIP cycle
- Short CIP and less rinse offers additional savings in water and electrical energy consumptions

Daily CIP-Time [min]

Pre- Rinse 15 min	Heat + Dosing 20 min	Ultrasil 67 + 69new 50 min		Rinse 30 min	Heat + Dosing 20 min	Ultrasil 30 mir	75 Rins n 30 mi	e Hea Dos 20 r
Pre- Rinse 15 min	Heat + Dosing 20 min	Ultrasil 620 + 120 40 min	Heat + Dosing 9 min	Ultrasil 120 topping 20 min	Rinse 30 min	Heat + Dosing 20 min	Ultrasil 720 30 min	Final Rinse 26 min

Time (minutes)

The CIP regime was updated to the new regime using UMC 2.0

Case 2: Optimization of Permeability

- ▲ UF sweet whey processing plant producing WPC 80.
- Effective removal of fouling layers improved permeability thus reduces differential pressure.
- Reduced pressure build up on UF line provides additional processing time or option to increase flow rate.
- In this case, plant extended processing and could process 8% more.

Feed pressure after 4 hours before and after optimization (incl average line) with UMC 2.0

Case 3: Foaming Behaviour

- Concentration of surplus whey in an RO plant
- High foaming was observed in the draining system after the enzymatic CIP step in the old cleaning regime.
- With Ultrasil MembraneCARE 2.0 almost no foam was observed in the drains
- EDTA in two cleaning steps could be omitted.

Previous Cleaning Regime

Ultrasil MembraneCARE 2.0

Conclusion

- The new generation of cleaning compounds helps to improve productivity in whey processing plants
- The new solution improves Rinsability
- Expert assessment of the situation and understanding on Customer business drivers is essential to optimize in the right direction
- Successful implementation requires a partnership approach

