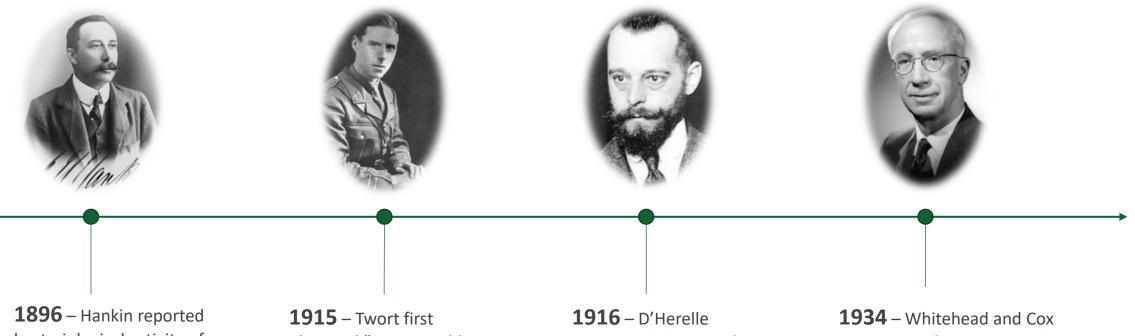

qPCR fast method for phage detection

14/10/2021 Billund, Hotel Legoland Vittoria Piccini, Research Scientist

AGENDA

- Introduction
- Lactococcus lactics phages
- Phage host interactions
- Impact of phages in dairy enviroment
- Detection methods for phages
- qPCR fast detection method
- Case study
- Conclusion

Almeida, G. M., Leppänen, M., Maasilta, I. J., & Sundberg, L. R. (2018). Bacteriophage imaging: past, present and future. Research in microbiology, 169(9), 488-494.


A Why are bacteriophages an issue in the dairy enviroment?
Product waste
Cheese defects
Food safety related concerns

age imaging: past, present and future. Research in microbiology, 169(9), 488-494.

Almeida, G. M., Leppänen, M., Maasilta, I. J., & Sundberg, L. R. (2018). Bacteriophage imaging: past, present and future. Research in microbiology, 169(9), 488-494

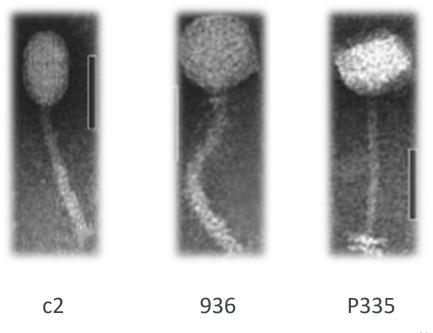
Bacteriophages in history

1896 – Hankin reported bacteriological activity of Ganges filtered water on *Vibrio cholera* **1915** – Twort first observed "transmissible glassy transformation" of bacteria **1916** – D'Herelle discovered the basic facts about phages in filtrates of dysentery fluids **1934** – Whitehead and Cox isolated the first bacteriophages from lactic acid bacteria

Sharp, R. (2001). Bacteriophages: biology and history. Journal of Chemical Technology & Biotechnology, 76(7), 667-672.

Summers, W. C. (2012). The strange history of phage therapy. Bacteriophage, 2(2), 130-133.

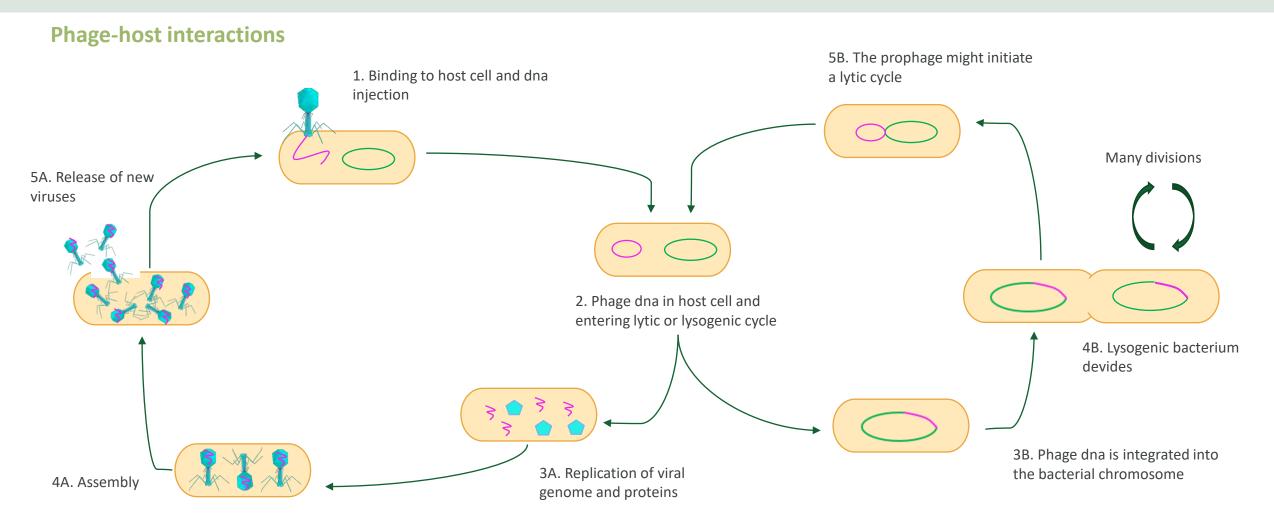
Lactococcus lactis phages and their presence in dairies


Host	Bacteriophage family	Bacteriophage species	Taxonomy references
L. lactis	Siphoviridae	936	Deveau et al., 2006
		P335	
		c2	
		1358	
		Q54	
		P087	
		1706	
		949	
	Podoviridae	P034	
		KSY1	

Deveau, H., Labrie, S. J., Chopin, M. C., & Moineau, S. (2006). Biodiversity and classification of lactococcal phages. *Applied and environmental microbiology*, *72*(6), 4338-4346. Mahony, J., & Van Sinderen, D. (2014). Current taxonomy of phages infecting lactic acid bacteria. *Frontiers in microbiology*, *5*, 7.

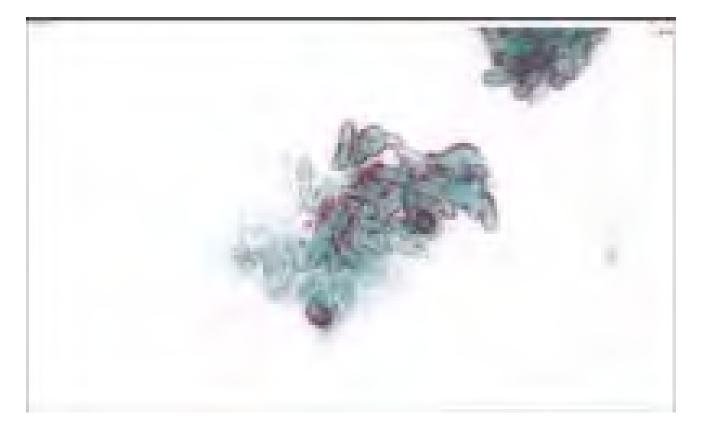
Arla

Lactococcus lactis phages and their presence in dairies


- Among the 10 currently recognized lactococcal phage groups 936, c2 and P335 are the most frequent in dairy enviroments
- 936-group phages showed to be the most problematic group for fermentations
- P335 group showed significant genetic diversity and absence of a core genome
- According to Madera et al., 936 around 24%, P335 around 4%, c2 around 72% of phages in milk and after pasteurization 936 type becomes more dominant

*bars 50 nm

Deveau, H., Labrie, S. J., Chopin, M. C., & Moineau, S. (2006). Biodiversity and classification of lactococcal phages. *Applied and environmental microbiology*, *72*(6), 4338-4346. Madera, C., Monjardín, C., & Suárez, J. E. (2004). Milk contamination and resistance to processing conditions determine the fate of Lactococcus lactis bacteriophages in dairies. *Applied and environmental microbiology*, *70*(12), 7365-7371. Oliveira, J., Mahony, J., Hanemaaijer, L., Kouwen, T. R., & van Sinderen, D. (2018). Biodiversity of bacteriophages infecting Lactococcus lactis starter cultures. *Journal of dairy science*, *101*(1), 96-105.



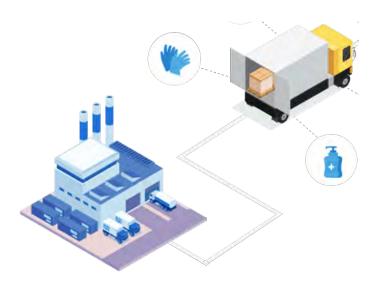
Campbell, A. (2003). The future of bacteriophage biology. Nature Reviews Genetics, 4(6), 471-477.

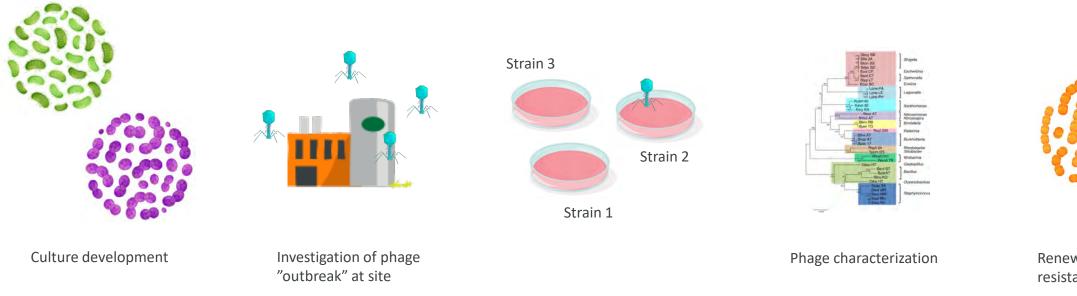
Phage-host interactions

https://www.youtube.com/watch?v=HfqCxrMQHpQ

Estimated economical impact of bacteriophages at dairies

- 2000 tons per year of cheese produced \rightarrow 50.000.000 DKK gaining
- If there is a phage attack, there will be a fluctuation in cheese moisture (2%) and consequently out of spec
- Loss of around 1.000.000 DKK per year
- Food safety related risk and consequent costs




Fight phages at dairies

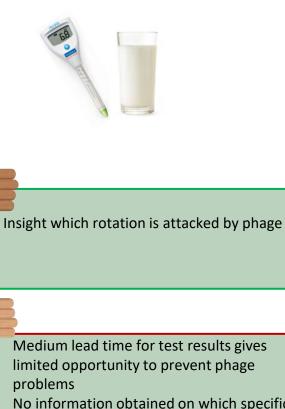
- Performing rotation of starter cultures
- Sanitation of dairy facilities
- Application of efficient heat-treatments

Fight phages at dairies - Performing rotation of starter cultures

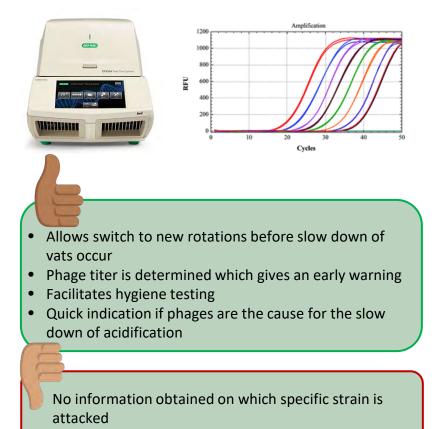
Renewal with cultures resistant to phages

Phage tests currently available

Overlay assay

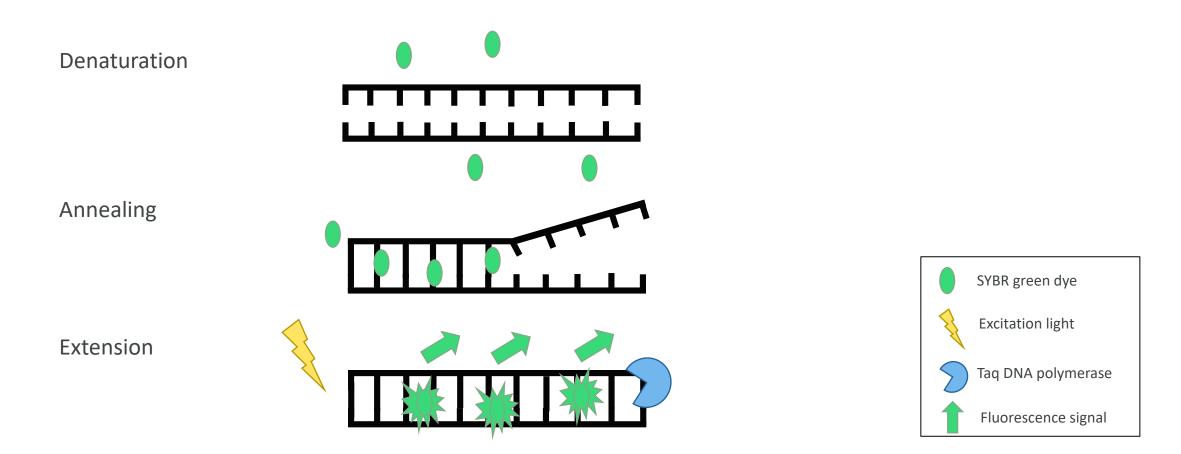


• Insight which strain is attacked by phage


- Insight which rotations/strains are not affected by the phage
- Free service provided by supplier

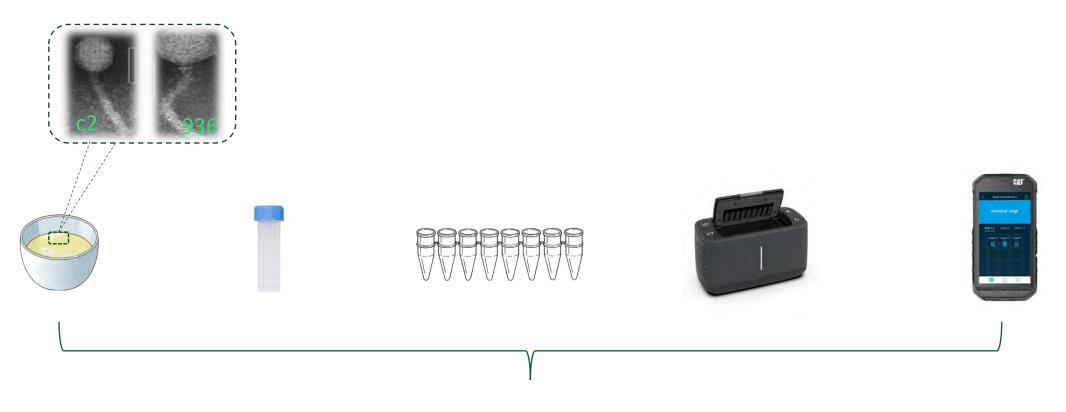
Long lead time for test results does not prevent phage problems

Acidification assay



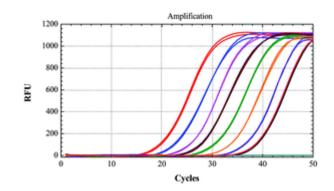
qPCR test

• No information obtained on which specific strain is attacked

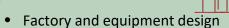

Principle of qPCR detecting phage DNA

Muhammed, M. K., Krych, L., Nielsen, D. S., & Vogensen, F. K. (2017). A high-throughput qPCR system for simultaneous quantitative detection of dairy Lactococcus lactis and Leuconostoc bacteriophages. PLoS One, 12(3), e0174223.

Phage test kit – Workflow

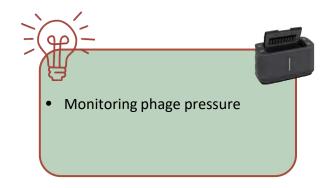


Phage test kit – Interpretation of results



TARGET	RESULT	STARTING QUANTITY (SQ)
	Detected - High	30,001 - 300,000
	Detected - High/Medium	3,001 - 30,000
	Detected - Medium	.301 - 3,000
	Detected - Low/Medium	31 - 300
	Detected - Low	1-30
	Not Detected	0

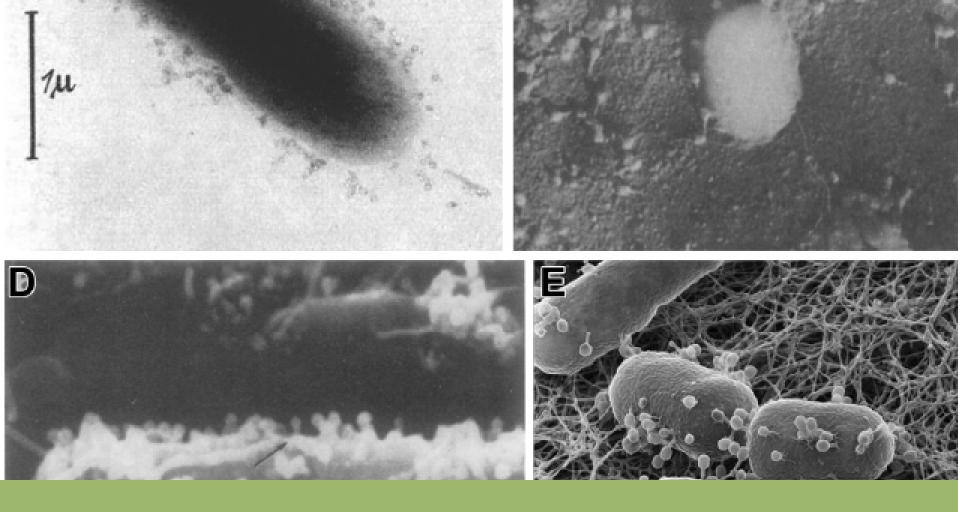
Fighting bacteriophages at dairies is a never-ending challenge...


- Process design (heat treatments)
- Process design (neat treatments
- Sanitation

- Use of phage-resistant starter culture
- Culture rotation programs
- Sanitation

- Use microbiologically safe water
- Avoid stagnation of water in drains and production area

- Correct disposal
- Correct thermal treatments



Collaborations and acknowledgment

- Eric van den Berg Application Expert Phages DSM
- The Danish Society of Dairy Technology

THANKS FOR YOUR ATTENTION ③

List of references

- Almeida, G. M., Leppänen, M., Maasilta, I. J., & Sundberg, L. R. (2018). Bacteriophage imaging: past, present and future. *Research in microbiology*, *169*(9), 488-494.
- Campbell, A. (2003). The future of bacteriophage biology. *Nature Reviews Genetics*, 4(6), 471-477.
- Deveau, H., Labrie, S. J., Chopin, M. C., & Moineau, S. (2006). Biodiversity and classification of lactococcal phages. *Applied and environmental microbiology*, 72(6), 4338-4346.
- Madera, C., Monjardín, C., & Suárez, J. E. (2004). Milk contamination and resistance to processing conditions determine the fate of Lactococcus lactis bacteriophages in dairies. *Applied and environmental microbiology*, *70*(12), 7365-7371.
- Mahony, J., & Van Sinderen, D. (2014). Current taxonomy of phages infecting lactic acid bacteria. *Frontiers in microbiology*, *5*, *7*.
- Marcó, M. B., Moineau, S., & Quiberoni, A. (2012). Bacteriophages and dairy fermentations. *Bacteriophage*, 2(3), 149-158.
- Muhammed, M. K., Krych, L., Nielsen, D. S., & Vogensen, F. K. (2017). A high-throughput qPCR system for simultaneous quantitative detection of dairy Lactococcus lactis and Leuconostoc bacteriophages. *PLoS One*, *12*(3), e0174223.
- Oliveira, J., Mahony, J., Hanemaaijer, L., Kouwen, T. R., & van Sinderen, D. (2018). Biodiversity of bacteriophages infecting Lactococcus lactis starter cultures. *Journal of dairy science*, *101*(1), 96-105.
- Sharp, R. (2001). Bacteriophages: biology and history. *Journal of Chemical Technology & Biotechnology*, 76(7), 667-672.
- Summers, W. C. (2012). The strange history of phage therapy. *Bacteriophage*, *2*(2), 130-133.

