

How to lower the carbon footprint of the process room

Presentation at DMS seminar "Framtidens teknologier i skummesalen" Kenneth Sjöström 15/4 - 2021

Agenda

- What factors will influence carbon footprint
- Regeneration definition
- Running time
- Product losses
- Cleaning
- Relation between regeneration and carbon footprint

Disclaimer All figures are for guidance only

What factors will influence carbon footprint from process room

What factors will influence the carbon footprint

Pasteuriser

Heating media Cooling media Pressure drop Machine efficiency

Running time Cleaning Product losses

Energy usage in pasteuriser

Power during production – 10.000 l/h pasteuriser (90% regen)

Heating – 80 kW Cooling – 80 kW Deaeration – 50 kW Separation – 10 kW Homogenisation – 50 kW Pumps - 5 kW

Some carbon footprint factors

Steel Product loss Heat Electric power Cooling

1 kg steel - 2 kg CO_2 1 kg milk - 1,5 - 3 kg CO_2 1 kWh - 0,3 kg CO_2 (Coal/oil) 1 kWh - 0,7 kg CO_2 (Denmark) 1 kWh - 0,2 kg CO_2

Regeneration

Definition of regeneration degree

Regeneration degree =
$$\frac{T2 - T1}{T3 - T1} = \frac{T4 - T5}{T4 - T6}$$

"Regen"

General

Pasteuriser running times

What will limit running time?

Fouling Bacteria count Production schedule

Fouling

High surface temperature Undissolved air (air bubbles) "Disturbed" mineral balance (Surface finish)

Pressure must be increased when heating the milk to avoid dissolved air

Thermoduric bacteria after pasteurisation

Bacterias and spores will be released from regen after some time

Will limit running time for some products, e.g. cheese, but not for chilled milk

Bacteria count in pasteurized milk at the exit from the pasteurizer as measured by incubating at 30°C, seven different production runs.

Bacteria count in pasteurized milk at the exit from the pasteurizer as measured by incubating at 55°C, seven different production runs.

Product losses

Tetra Pak[®]CO

Carbon footprint from product losses

Mix phases will occur at all fillings and emptyings

Reduce mix phases as much as possible

Recover mixphases

Low loss balance tank

Phase interface in pipe in stead of in balance tank

Carbon footprint from cleaning

Heating of steel Heating of liquids Cooling to production temperature

10.000 l/h pasteuriser – Around 200 kWh / 50 kg CO₂

Higher regen -> More steel and more liquid -> Higher carbon footprint

How does regen influence carbon footprint

Carbon footprint contributions

(10.000 l/h pasteuriser, 90% regen)

		CO ₂ Kg/h	Note
Heating energy	80 kW	24	
Cooling energy	80 kW	16	
Pumps	5 kW	4	
Homogeniser	50 kW	35	Full stream
Separator	10 kW	7	
Product loss	40 kg/CIP	10	1 CIP / 8 h
CIP heating	200 kWh	7	1 CIP / 8 h
Steel		0	

Figures for guidance only

How regen and carbon footprint relates

So, what can we do?

What actions can we do to reduce carbon footprint

Use energy sources with lower carbon footprint

- "Green electricity"
- Heat recovery system with heat pump in stead of boiler

Use efficient machines

- Focus on design and operation of main machines (homogeniser & separator)

What actions can we do to reduce carbon footprint

Longer running times

Will decrease the negative impact from product losses and cleaning energy when using high regen

- Avoid fouling
- Know your bacterias and technology
- Tell market department to sell only one type of milk

Reduce product losses

Will decrease the negative impact from product losses when using high regen

- Create shorter mixphases
- Recover product

What actions can we do to reduce carbon footprint

Higher regen

Must be balance against

- Running times
- Product losses
- Energy sources for heating and cooling

How regen and carbon footprint relates

Carbon footprint

Reduce heating energy Reduce cooling energy Longer running times

Reduce product losses Reduce pressure drop Reduce cleaning

Lower CO₂ heating media Lower CO₂ cooling media

Tetra Pak[®]